مرزهاي نانومحاسبات                     
1/23/2014--متفرقه
 
 
 در اين مقاله مي کوشيم تامرزهاي نانو محاسبات را از رهگذر بررسي قابليتها و محدوديتهاي روشهاي عمده محاسباتي نشان دهيم:

 مدلسازي چند مقياسي، زمينة جديد در مدلسازي مواد نيست، در سالهاي اخير فيزيکدانان به دنبال روشهاي رياضي جهت کاهش درجات آزادي مدل‌هاي فيزيکي هستند. در حقيقت اين روش در سازگاري کامل با اين حقيقت است که چگونه مي‌بايستي درجات آزادي قابل مشاهدة سيستم را به منظور نيل به بهترين جواب و حداقل هزينه سوق داد.

اعجاز مکانيک آماري، به عنوان مثال، نشانگر اين موضوع است که رفتار مجموعه‌اي از اتمها با بي نهايت درجة آزادي با قوانين ساده‌اي بيان مي‌شود. اين روش ريشه در اين حقيقت دارد که «کار ميانگين» تقريب خوبي دارد، زماني که اغلب اطلاعات در معادلات بنيادي رفتار هزاران هزار اتم را نشان دهند. به هر صورت، زماني که ساختار ماده و نظم حاکم بر آن را در مقياس ميکرو و نانو توضيح مي‌دهيم، بسياري از اين اساس‌ها چالش‌هاي واقعي را پديد مي‌آورد. همچنين قوانين فيزيک آماري بدون داشتن نمونه‌هاي کافي اعتبار روشن نخواهند داشت. به همين ترتيب چالشهايي نظير انتقال فاز، هسته‌بندي، پلاستيسيته و مکانيک شکست، پديده‌هائي اساسي در درک رفتار شناسي ماده خواهند بود که روش‌هاي مبتني بر تکنيک‌هاي ميانگين به اطلاعات درست منتهي نخواهند شد.

با اين حال، ظهور محاسبات بزرگ مقياس، انگيزشي براي دانشمندان در جهت شناسايي رفتار ماده در جهت‌هايي جديد است که اميدوار کننده است. در عوض کاهش درجة پيچيدگيهاي مسأله به منظور کاهش درجات آزادي آن و در نهايت حل عددي مسأله که به نام روش دو جهته آزمايش- محاسبه ناميده مي‌شود هنوز نتايج آن به عنوان يک برتري پذيرفته نشده است. آنچه که به عنوان نتايج شبيه‌سازي است مي‌بايستي با نتايج آزمايشگاهي تطبيق داده شود.

اين مسأله به مدت يک دهه ميان دانشمندان محل بحث بوده است، زيرا برخي معتقدند شبيه‌سازيهاي عددي داراي تقريبات زيادي است زيرا فلسفة محاسبات عددي مي‌بايستي براي هر مسأله‌اي تحليل شود. البته اخيراً اين بحث‌ها روبه سوي همگرايي آورده است. شبيه‌سازيهاي رايانه‌اي مبتني برالگوريتمهاي پيچيده‌تر که ريشه در فيزيک کوانتوم دارند، منجر به جوابهاي مقبول‌تري شده است. اين پيشرفته‌ها که با پيشرفتهاي سخت‌افزاري نيز همراه گشته است، برخي از شک‌گرايان شبيه‌سازي را آرام کرده است. هر چند که هنوز هم توابع پتانسيل بين اتمي دقت بالاتري را در شبيه‌سازي ديناميک مولکولي بوجود مي‌‌آورد.

همچنين اندازه سيستم تحت شبيه‌سازي، بصورت نمايي رشد يافته است. ارتباط ميان مدلسازي به روش ديناميک مولکولي و "ab intio" فضاي بهتري را خلق کرده است. در مقياس «مزو»، ارتباط ميان دنياي اتمي وماکروسکوپي، تلاشهاي کمي، منجر به ايجاد توانايي کشف راه‌حلهائي براي مدلسازي رژيمهاي ممنوعه مدلسازي شده است. در طي يک دهة گذشته فقط شبيه‌سازي رايانه‌اي 2 بعدي رفتار شناسي مجموعة نابجائيها مقدور بود. اطمينان به واقعيت اين روشهاي شبيه‌سازي هنوز زياد بالا نيست زيرا هنوز رفتار نابجائيهاي برد کوتاه را نمي‌توان به درستي مدلسازي کرد. با اين وجود، اين حقيقت که چندين مدل رفتار شناسي نابجائيها بوسيلة شبيه‌سازي توجيه شده است، اميدواريهائي را پديد آورده است.

اخيراً پژوهش بر روي مدلهاي پلاستيسيته در مقياس «مزو» جهت توجيه تغيير شکل پلاستيک صورت گرفته است. اين کوششها، روشهاي مدلسازي 3 بعدي را جهت توجيه رفتار ديناميک نابجائها، به همان خوبي روشهاي فيزيک آماري، پديدآورده است.

چالش اصلي در راه توسعة مدلسازي چند مقياسي يکپارچه، مسأله «مقياس اندازه»، «مقياس زمان» و «دقت» است. دقت محاسبات عددي و خودسازگاري مدلهاي چندمقياسي را در زير بررسي مي‌کنيم:

الف- مقياس اندازه:

تعداد درجات آزادي اتمي در يک سيستم ماده‌اي نوعي، بسيار زياد است و اگر کسي بخواهد يک ميکرون مکعبي را مدل کند، معادلات حرکت چند بيليون اتم رامي‌بايستي بصورت عددي حل کند.

در فضاي «زير پيوسته» سيستم ماده‌اي بقدر کافي کوچک است که قابليتهاي محاسباتي مي‌تواند آن را بصورت واقعي مدل کند، از اين گذشته، چندين مدل چند مقياسي وجود دارد که مي‌تواند مدلهاي اتمي و مدلهاي پيوسته را در قالب يک ساختاريکپارچه شبيه‌سازي، مدلسازي کند.

اين روشهاي اتمي و چند مقياسي، به گونه موفقيت‌آميزي در حوزة بررسي خرابي شبکه‌اي سازة ماده در قالبتهاي استاتيک و شبه استاتيک بکار گرفته شده است. اما اگر کسي بخواهد يک سيستم را با در نظر گرفتن تمام اتمهايش مدلسازي کند، مسائل جديدي مطرح مي‌شود:

 با افزايش تعداد اتمهاي محاسباتي در يک سيستم شکل‌هاي انرژي حداقل به سرعت رشد مي‌بايد. آناليز N خوشه اتمي نشان مي‌دهد که تعداد حالات انرژي حداقل، از eN سريعتر رشد مي‌کند، بدون اينکه مقدار تمام حالات مقدور اين مقادير حداقل را بدانيم. بسيار مشکل است تا شکل اتمي اوليه‌اي را آماده کنيم که به فيزيک واقعي سيستم نزديک باشد. مسأله شکل به ساير مشکلات حوزة زمان و دقت تعميم مي‌يابد. اگر کسي بخواهد شبيه سازي را بصورت کامل اجراءنمايد، پيچيدگي اتمي به انضمام حساسيت سيستم به موقعيت اوليه اتمها چالش‌هاي اساسي پديد مي‌آورد، از سوي ديگر عدم دقت تابع پتانسيل بين اتمي خطاهائي را درمحاسبه اشکال کمينة تابع انرژي بوجود مي‌آورد. هر دو اين مسائل، به نحو کاملاً جدي و خطيري قابليت اعتماد به شبيه‌سازي اتمي را تحت تأثير قرار داده‌اند. اگر چه پيشرفتهاي قابل توجه اخير در حوزة شبيه‌سازي «مزوئي» تعدادي از چالشها را باقي گذارده است اما به هر حال طبيعت برد بلند ميدان تنش نابجائيها، پيچيدگي توپولوژيک خطوط نابجائي‌ها، طرز رفتار شرايط مرزي تناوبي، که متضمن سازگاري آماري نتايج است، درجة دقت در حل تعاملات ميان نابجائيها و سطوح و آخالهاي ناهمسانگرد الاستيک و اثرات تعامل داخلي در ديناميک نابجائيها هنوز چالشهاي عمده‌اي هستند که در آينده‌اي نزديک دانشمندان را به چالش خواهند کشيد. مسائل مرتبط با پلاستيسيتة پلي کريستالها ميان‌برهاي اضافي را مي‌طلبد. سؤال اساسي د

 
<<مقاله قبلی   مقاله بعدی>>
پيچيدگي محاسبات و معماري سيستم‌هاي نانويي...   جهان رياضيات در فضاي نانو...